FEELEX: Adding Haptic Surface to Graphics

Hiroo Iwata, Hiroaki Yano, Fumitaka Nakaizumi, and Ryo Kawamura

University of Tsukuba

Limitations in current haptic interface

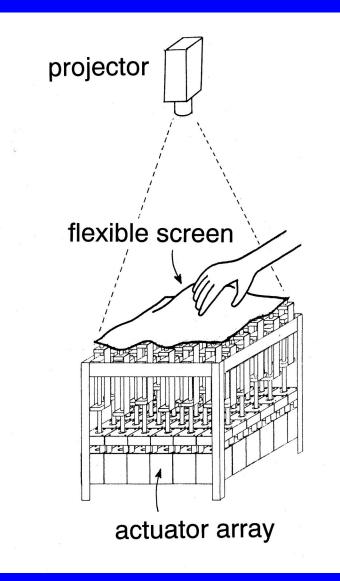
Point contact

 haptic surface is
 not

 spatially
 continuous

 Separated visual/haptic display

Desktop Force Display (Iwata, SIGGRAPH 90)


Goals of project FEELEX

 (1) to provide a spatially continuous su rface that enables users to feel virtua l objects using any part of the fingers or even the whole palm.

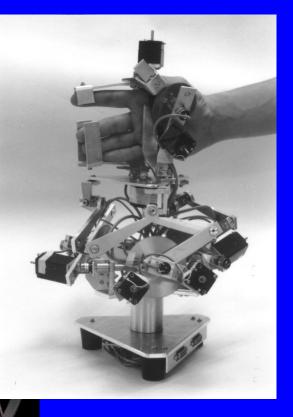
(2) to provide visual and haptic sensati ons simultaneously using a single de vice that doesn't oblige the user to w ear any extra apparatus.

Basic Idea of FEELEX

- Image is projected on a flexible screen.
- Flexible screen is deformed by an actuator array.
- Deformation occurs according with force sensing.

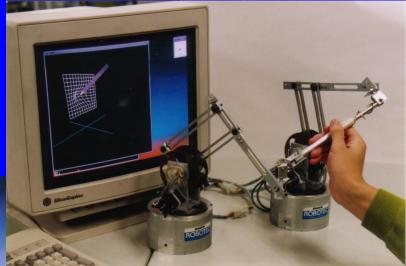
Related Work

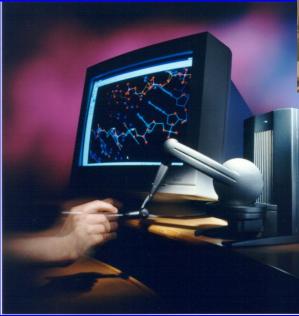
(1) Haptic Interface


exoskeleton; Iwata(1990), Burdea(1992) tool-handling-type; Iwata(1993), Massie(1994) object-oriented-type; Tachi(1994), Hirota(1996)

(2) Real World Graphics Wellner(1991), Ishii(1999)

Method for Haptic Interface (1) exoskeleton


- many degrees of freedom
- difficulty in pu g on/off

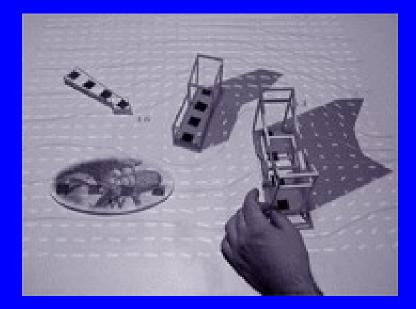


Method for Haptic Interface (2) tool-handling-type

free from fittingsingle point contact

Method for Haptic Interface (3) object-oriented-type

Device deforms to simul ate virtual object.


- continuous surface
 contact
- × difficult to fabricate

Real World Graphics

Image projection on phys ical objects

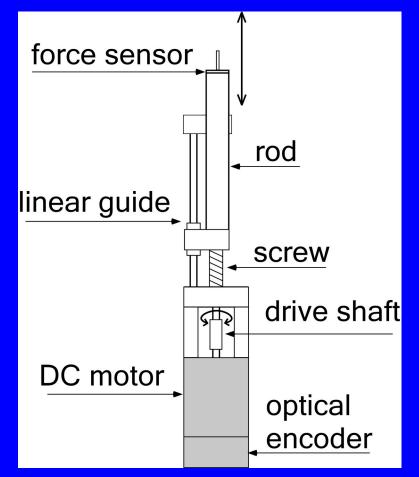
 intuitive interaction
 deformation is not pr esented

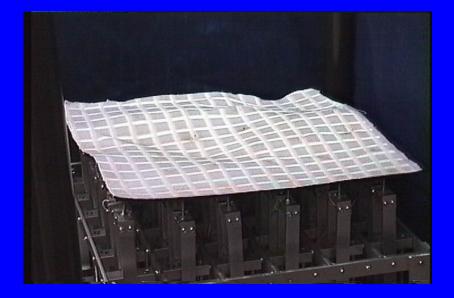
I/O Bulb (Hiroshi Ishii)

FEELEX = object-oriented-type haptic interface + real world graphics

Prototype Implementation FEELEX 1

Design specification


Two-hand, whole palms Motor with tangible power → 6 X 6 actuator array 24cm X 24cm screen


Actuator for FEELEX 1

1) Screw mechanism self-lock
→ free from vibration
stroke = 80mm max speed = 100mm/s

2) Force sensor strain gauge

Graphics for FEELEX 1

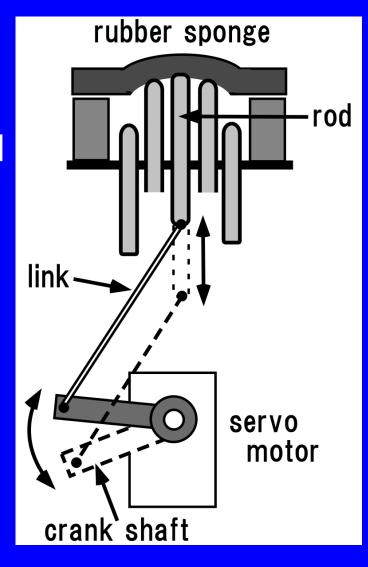
Projected grid on the deformed screen

Anomarocaris

Prototype Implementation FEELEX 2

Design specification

- Palpation by 3 fingers
- Hard object smaller than 8 mm is difficult to palpate (Lederman & Klatzky, 1999)
- Iod size = 6mm
 distance between lods
 = 8mm
 display area = 5cm X 5cm



Actuator for FEELEX 2

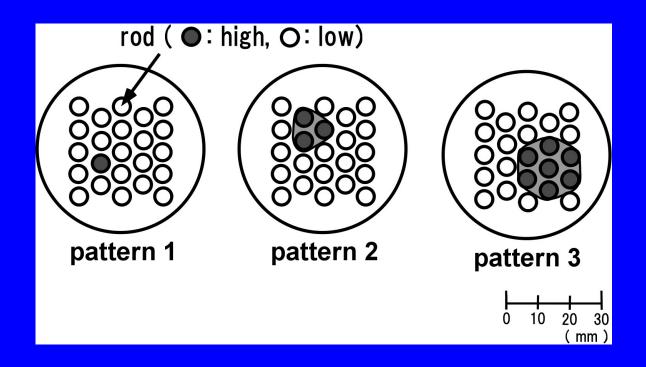
1) Piston-crank mechanism
 offset position
 → motor can move small rod

stroke = 18 mm max speed = 250 mm/s max force = 1.1 Kgf

2) Force sensor measuring electric current

Evaluation of FEELEX 1 Observation of User's Behavior

Test environment: SIGGRAPH'98 **Content:** Anomarocaris **Procedure:** only a signage saying "You can touch it" Number of subjects: 1,992


Results of Observation of User's Behavior

Category	number of subjects
(1) Touched the creature using a single finger	299 (15%)
(2) Touched the creature using multiple fingers	319 (16%)
(3) Touched the creature using the whole hand including the palm	1374 (69%)

85% of the subjects used multiple fingers or their palms without instruction.

Evaluation of FEELEX 2 Recognition Performance of Palpation

Task: Invisible hard objects are displayed (3 patters). Subjects are asked to draw position and size of the hard object on a piece of paper.

Evaluation of FEELEX 2

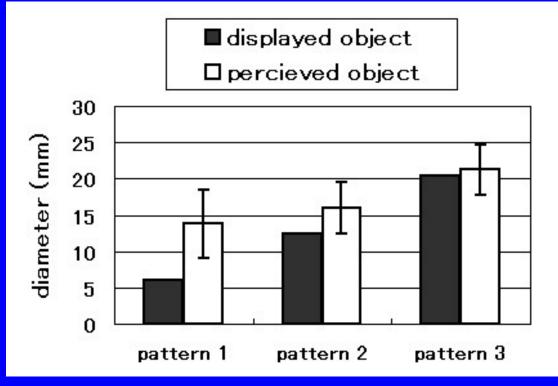
Subjects:

9 university students (7 males, 2 females) ranged in age from 22 to 24.

Procedure:

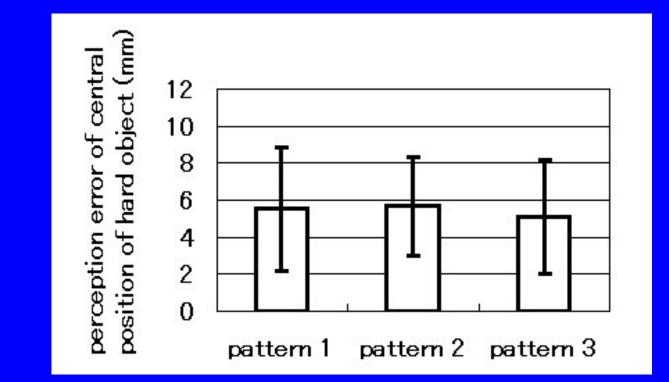
We prepared three trials for each pattern.

The three patterns are displayed in random order, and thus each subject completed a total of 9 trials.


The subjects were asked to draw the object that th ey perceived for each trial.

Result of Evaluation (1) Size of perceived objects

The size of a perceived object is represented by the approximated diameter of the figure drawn by th e subjects.


 $d = \sqrt{4S/\pi}$

Where d = approximate diameter S = measured area

Result of Evaluation (2) position of perceived objects

We calculated the central position (center of mass) of each perceived object.

Discussion for the Experiments

(1) Perception error of size
 ranged from 1mm to 8 mm
 → much smaller than finger,
 enough for palpation

Over estimation is caused by rubber sponge that covers the rods.

(2) Perception error of position
 less than 6mm
 → reasonable error compared to rod distance (8mm)

General Discussion for the FEELEX

(1) advantages

- natural interaction
- success in long term exhibition in a museum
- safety

free from vibration or unwanted force

(2) disadvantages

- difficulty in hardware implementation
- limitation of simulated shape sharp edge, backside of object

Applications for the FEELEX

- Palpation training simulator, tele-medicine - 3D shape modeling virtual clay for rough design task - Touch screen barrier-free solution - Art interactive sculpture

Conclusion

Prototype FEELEX provides natural haptic in teraction.

Effectiveness is tested through exhibition an d palpation experiments.

Future Work

Development of new mechanism - ability to simulate various shapes - low-cost, easy to fabricate, mechanically robust